Math 251 Fall 2017

Quiz #5, October 11th

Solutions

There are 25 points possible on this quiz. This is a closed book quiz. Calculators and notes are not allowed. Please show all of your work! If you have any questions, please raise your hand.

Exercise 1. (6 pts.) Differentiate the following functions.

(a)
$$f(\theta) = \theta \sin \theta \cos \theta$$

$$f(0) = 1 \cdot (\sin \theta \cos \theta) + \theta \cdot \frac{d}{d\theta} (\sin \theta \cos \theta)$$

$$= \sin \theta \cos \theta + \theta \cdot [\sin \theta \cdot (-\sin \theta) + \cos \theta \cdot \cos \theta]$$

$$= \sin \theta \cos \theta + \theta \cdot (\cos^2 \theta - \sin^2 \theta)$$

ctions.
(b)
$$f(t) = 4^{5t^2} = (4)^{5t^2}$$

 $f'(t) = (\ln 4) \cdot 4^{5t^2} \cdot \frac{d}{dt} [5t^2]$
 $= (\ln 4) 4^{5t^2} \cdot /0t$
 $= (10 \ln 4) t \cdot 4^{5t^2}$

Exercise 2. (6 pts.) find the derivatives of the following functions.

(a)
$$g(x) = \sec^{5}(3x) = [\sec(3x)]^{5}$$

(a)
$$g(x) = \sec^5(3x) =$$
 Sec(3x) (b) $f(x) = e^{x \csc x}$

=
$$15 \sec^5(3x) \tan(3x)$$
.

$$f'(x) = e^{x \csc x} \cdot \frac{d}{dx} (x \csc x)$$

$$= e^{x \csc x} \cdot [1 \cdot \csc x + x \cdot (-\cot x \csc x)]$$

$$= \csc x (1 - x \cot x) e^{x \csc x}$$

Exercise 3. (4 pts.) For what values of x does $y = \sqrt{x^2 + 5x}$ have a horizontal tangent?

$$y = (x^{2} + 5x)^{\frac{1}{2}}$$

$$y' = \frac{1}{2}(x^{2} + 5x)^{\frac{-\frac{1}{2}}{2}}(2x + 5)$$

$$=\frac{2\times+5}{2\sqrt{x^2+5}\times}=0$$

be cause we know horizontal slope means y'=0.

So,
$$2x+5=0$$
 or $x=-\frac{5}{2}$

But, x= - 1/2 is not in the domain of y'. (ie The derivative is undefined)

ans: y has no horizontal tangents

UAF Calculus 1

Circle your Instructor:

Faudree, Williams, Zirbes

_ / 25

Exercise 4. (4 pts.) Find an equation of the tangent line to the curve $y = \frac{8}{(\tan x + 2)^2}$ at the point

$$y = 8 (\tan x + 2)$$

$$y' = -16 (\tan x + 2) (\sec^{2} x)$$

$$= \frac{-16 \sec^{2} x}{(\tan x + 2)^{3}}$$

tangent line:

$$y-4 = -2(x-0)$$

 $y=-2x+4$

Correction: The point should have been (0,2). So the line should have been y = -2x+2.

$$y'(0) = \frac{-16 \sec^2 0}{(\tan 0 + 2)^3} = \frac{-16}{8} = -2 = m$$

Exercise 5. (5 pts.) Find the 50th derivative of $y = \sin(2x)$.

(a) Find the first four derivatives of $y = \sin(2x)$.

$$y' = 2\cos(2x)$$

 $y'' = -2^{2}\sin(2x)$
 $y''' = -2^{3}\cos(2x)$

$$y^{(4)} = 2^4 \sin(2x)$$

(b) Using your answer to (a), find the 50th derivative of $y = \sin(2x)$.

Every 4 derivatives, we get back to sin(2x).

$$(2x)$$
.

Ans: $y = -2$ $\sin(2x)$